继续学习 Stable Diffusion,这次想以搭建一个实际可用的生图场景 — 黏土风格作为引导,弄清楚整个流程的同时,把过程中遇到的相关概念和原理也做了解,所以这篇是掺和了应用流程和原理的文章。
ComfyUI & 模型
使用 Stable Diffusion 去生成图,有非常多的插件/模型/配置相互搭配组合使用,一般用 WebUI 和 ComfyUI 这两个工具,更推荐 ComfyUI,自由串联一个个模块,流程更清楚,网上有很多在自己电脑部署使用 comfyUI 的保姆级教程,比如这个,这里就不多介绍了。
先看 ComfyUI 这个默认的最简单的 workflow:
这里面简单的几个元素概念和生图流程,上篇文章都有介绍过:最左边的 Load Checkpoint 是加载 SD 模型,接着用 CLIP 模型编码文本 → 生成隐空间原始噪声图 → 采样器根据文本和噪声图输入→在隐空间里迭代降噪生成隐空间图片→最终用VAE解码图片。
为什么叫模型 checkpoint ?模型在微调训练过程中,会在关键节点保存模型参数的状态,这个保存点被称为 checkpoint,SD 有大量基于基座模型微调训练的模型,包括官方出的,比如 SDv1.5 是从 v1.2 的基础上调整得到的,SDXL Turbo 也是基于 SDXL1.0 基础上训练的,这些模型都被称为 checkpoint,这些 checkpoint 包含了生成图所需要的全部核心组件,包括 VAE、CLIP、UNet 的模型数据,可以直接使用。
那模型文件的后缀为什么是 .safetensors
?早期的模型文件后缀是 .ckpt
(checkpoint缩写),一个通过 Python 序列化后的数据,使用时需要对它反序列化,这个反序列化过程也就容易被注入恶意代码,所以后面提出了新型安全的格式 safetensors,只包含张量数据(模型上的参数数据),无需反序列化,安全且速度快,目前模型基本都以这种方式存储。
我们用这个默认 workflow,选个模型,用纯提示词 claymation style, a tower
试试生成黏土风图片:(图上使用了 dreamshaperXL 模型,是在SDXL 的基础上微调的最受欢迎的一个模型)
可以看到效果并不是很好,比较生硬。可能加多一些细节提示词、调节下相关参数会好一些,但在图片训练过程中,黏土风格相关的图片数量应该是不多的,训练图片对应的文本描述也比较散,如果固定要这种风格,生图的 prompt 要尽量贴近训练时这类图偏对应的文本,才有可能有好一点的效果,这很难控制,也不保证效果,很难达到我们想要的风格。