AI 瞎想 – LUI交互/新计算机

2024-6-29

LUI 交互

LUI (Language User Interface,自然语言 or 输入框为主的交互) 有几大缺点:

  1. 效率低(打字)or 隐私性差(语音)。
  2. 说话是填空题(要动脑),GUI 是选择题(可无脑选)。
  3. 难以精确表达。

这三点都是成本,如果一些场景想尝试 LUI 代替部分 GUI,需要时刻想好,如果用户得到的体验大于这几点成本,那就是合适的场景,否则不要勉强。

用 LUI 操作使用工具,模型能力(识别/执行能力)得在这个垂直领域靠近 AGI(代指跟人的识别和执行能力一致),或者能在这领域内限定在尽量小的范围内靠近 AGI,否则交互过程中模型不理解/无法执行带来的挫败,加上第一二点的成本,用户得到的体验大概率是负的。

微软copilot 尝试了GUI 为主,LUI为辅的方式。剪映的对话式剪辑尝试了以 LUI 为中心,GUI 为辅或者没有 GUI 的方式。目前看起来都没达到预期。原因自然是模型能力还达不到,识别和执行能力差。

视频剪辑/PPT制作 领域都太大,在这个大垂直领域模型要做到 AGI 的程度还太早,也是高估了短期模型能力的进步速度,需要把领域范围限定得更小,在这范围内用户的输入都能很好理解和执行,才可能跑通。

假如模型真达到 AGI 的程度,跟人的能力一样,是否视频剪辑用 LUI 是最好的方式?想象中不一定,工具能力不会是无限的,总有个范围,这个范围 GUI 能清楚地告诉你,LUI 很难,到时可能会有其他演化的交互配合 LUI。

新计算机

最近学习 transformer,看那些向量/矩阵的乘法,有种在学数字电路原理的感觉,要作类比的话,模型就是新的计算机,transformer 像芯片,SFT 像汇编,prompt 像 c 语言,往上 langchain/coze 是高级语言的尝试。原计算机是确定性计算,模型是概率性的模拟人脑的计算机。

但模型并没有遵循摩尔定律,18 个月性能翻一翻,GPU 运算能力确实每年性能都在暴涨,但模型的性能不是计算速度,而是理解能力。GPT-3.5 出来已经 18 个月了,GPT-4 已经 15 个月,模型能力的进步很有限,在这过程最大的变化只是开源模型逐渐追上,以及基于模型上层搭建的应用和生态上,基础模型能力没有大的突破。

我们预期模型性能能持续增强,基础是 Scaling Law,Llama3 训练中的最大参数量模型是4000亿,传闻 GPT4 参数量是1万亿,而人类大脑神经元突触连接有1000万亿(来源Wikipedia,也有说100万亿的),神经网络本身就是模仿大脑的构造,如果做类比有 100-1000 倍的差距,有很大的空间。Scaling Law 目前看还没收敛,能继续往这条路走,只是技术上的承接还没看到规律,无法形成新的摩尔定律,所以大家很期待 GPT-5,它能一定程度上让人判断模型的摩尔定律大概是什么节奏和速度。

图生成和视频生成领域,反而在过去18个月里有非常明显的提升,因为相对 LLM 它还在早期,而图像和视频的特性导致它早期也能有很好的应用。若 LLM 不顺利,图片视频能持续保持这提升速度,更有可能成为这几年的重点。

分类:互联网 Tags:
评论

*

*